skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Hoffmann, Markus"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Density, viscosity, and self-diffusion coefficients are reported for octan-1-ol and the related ether-alcohols 2-pentoxyethan- 1-ol, 3-butoxypropan-1-ol, 4-propoxybutan-1-ol, 5-ethoxypentan- 1-ol, and 6-methoxyhexan-1-ol covering temperature ranges from 298.15 to 359.15 K. These new data reveal structure− property relationships affected by the presence and the position of the ether moiety in the molecular structure of the ether-alcohols. Compared to octan-1-ol, the presence of the ether moiety causes an increase in intermolecular hydrogen bonding interactions, resulting in higher densities. The increase in density is less pronounced for those ether-octanols that engage in intramolecular hydrogen bonding. As for the effects of the ether moiety on the dynamics, these are generally faster for the ether-alcohols compared to octan-1- ol, suggesting that hydrogen bonding between ether oxygen and hydroxy hydrogen is weaker compared to hydrogen bonding between two hydroxy groups. The activation energies obtained from an Arrhenius analysis are higher for translational motion than for momentum transfer for all alcohols. There are additional finer details across the ether alcohols for these activation barriers. These differences cancel out for the mathematical product of self-diffusion coefficient and viscosity (Dη). The effect of water impurities on the studied properties was also investigated and found to lead to small increases in densities for all alcohols. Viscosities decrease for octan-1-ol and 2-pentoxyethan-1-ol but increase for the other ether-alcohols that can engage in intramolecular hydrogen bonding. 
    more » « less
  2. This review gives an overview of current trends in the investigation of confined molecules such as water, small and higher alcohols, carbonic acids, ethylene glycol, and non-ionic surfactants, such as polyethylene glycol or Triton-X, as guest molecules in neat and functionalized mesoporous silica materials employing solid-state NMR spectroscopy, supported by calorimetry and molecular dynamics simulations. The combination of steric interactions, hydrogen bonds, and hydrophobic and hydrophilic interactions results in a fascinating phase behavior in the confinement. Combining solid-state NMR and relaxometry, DNP hyperpolarization, molecular dynamics simulations, and general physicochemical techniques, it is possible to monitor these confined molecules and gain deep insights into this phase behavior and the underlying molecular arrangements. In many cases, the competition between hydrogen bonding and electrostatic interactions between polar and non-polar moieties of the guests and the host leads to the formation of ordered structures, despite the cramped surroundings inside the pores. 
    more » « less
  3. Polyethylene glycol (PEG) is one of the environmentally benign solvent options for green chemistry. It readily absorbs water when exposed to the atmosphere. The Molecular Dynamics (MD) simulations of PEG200, a commercial mixture of low molecular weight polyethyelene glycol oligomers, as well as di-, tetra-, and hexaethylene glycol are presented to study the effect of added water impurities up to a weight fraction of 0.020, which covers the typical range of water impurities due to water absorption from the atmosphere. Each system was simulated a total of four times using different combinations of two force fields for the water (SPC/E and TIP4P/2005) and two force fields for the PEG and oligomer (OPLS-AA and modified OPLS-AA). The observed trends in the effects of water addition were qualitatively quite robust with respect to these force field combinations and showed that the water does not aggregate but forms hydrogen bonds at most between two water molecules. In general, the added water causes overall either no or very small and nuanced effects in the simulation results. Specifically, the obtained water RDFs are mostly identical regardless of the water content. The added water reduces oligomer hydrogen bonding interactions overall as it competes and forms hydrogen bonds with the oligomers. The loss of intramolecular oligomer hydrogen bonding is in part compensated by oligomers switching from inter- to intramolecular hydrogen bonding. The interplay of the competing hydrogen bonding interactions leads to the presence of shallow extrema with respect to the water weight fraction dependencies for densities, viscosities, and self-diffusion coefficients, in contrast to experimental measurements, which show monotonous dependencies. However, these trends are very small in magnitude and thus confirm the experimentally observed insensitivity of these physical properties to the presence of water impurities. 
    more » « less
  4. Two different mesoporous silica materials (SBA-15 and MCM 41) were impregnated with four different, commercially available surfactants, namely, E5, PEG 200, C10E6, and Triton X-100. Differential scanning calorimetry was employed to confirm the confinement of the surfactants in the pores of their host materials. Dynamic nuclear polarization enhanced solid state 13C magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectra were recorded for these materials, showing that both the direct as well as the indirect polarization transfer pathways are active for the carbons of the polyethylene glycol moieties of the surfactants. The presence of the indirect polarization pathway implies the presence of molecular motion with correlation times faster than the inverse Larmor frequency of the observed signals. The intensities of the signals were determined, and an approach based on relative intensities was employed to ensure comparability throughout the samples. From these data, the interactions of the surfactants with the pore walls could be determined. Additionally, a model describing the surfactants’ arrangement in the pores was developed. It was concluded that all carbons of the hydrophilic surfactants, E5 and PEG 200, interact with the silica walls in a similar fashion, leading to similar polarization transfer pathway patterns for all observed signals. For the amphiphilic surfactants C10E6 and Triton X-100, the terminal hydroxyl group mediates the majority of the interactions with the pore walls and the polarizing agent. 
    more » « less
  5. Haro-Mares, N.; Brodrecht; Wissel, Till; Döller, S.; M. Rösler, L; Breitzke, H.; Hoffmann, M.M.; Gutmann, T.; Buntkowsky, G. (Ed.)
    The physicochemical effects of decorating pore walls of high surface area materials with functional groups are not sufficiently understood, despite the use of these materials in a multitude of applications such as catalysis, separations, or drug delivery. In this study, the influence of 3- amino-propyl triethoxysilane (APTES)-modified SBA-15 on the dynamics of deuterated ethylene glycol (EG-d4) is inspected by comparing three systems: EG-d4 in the bulk phase (sample 1), EG-d4 confined in SBA-15 (sample 2), and EG-d4 confined in SBA-15 modified with APTES (sample 3). The phase behavior (i.e., melting, crystallization, glass formation, etc.) of EG-d4 in these three systems is studied by differential scanning calorimetry. Through line shape analysis of the 2H solid-state NMR (2H ssNMR) spectra of the three systems recorded at different temperatures, two signal patterns, (i) a Lorentzian (liquid-like) and (ii) a Pake pattern (solid-like), are identified from which the distribution of activation energies for the dynamic processes is calculated employing a two-phase model. 
    more » « less
  6. This study is seeking a better understanding of polyethylene glycol (PEG) as a solvent to promote its use in chemical synthesis. The effect of adding two solutes of interest, 2,2,6,6-tetramethylpiperidinyloxyl (TEMPO) and 5-tert-butylisophthalic acid (5-TBIPA) to PEG200 (average molar weight of 200 g·mol−1) on the solution density, viscosity, and selfdiffusion coefficients is monitored in a temperature range of 298.15–358.15 K to deduce how these solutes interact with the PEG200 solvent. The effect of water, the most common impurity in PEGs, is also monitored and found to be nearly negligibly small. Addition of (5-TBIPA) increases solution density and viscosity. Combined with the observation that 5-TBIPA consistently self-diffuses at about half the rate as PEG200 at all investigated experimental conditions, this suggests strong attractive solute–solvent interactions likely through hydrogen bonding interactions. In contrast, addition of TEMPO causes lower solution densities and viscosities suggesting that the solute–solvent interactions of TEMPO lead to an overall weakening of the intermolecular interactions present compared to neat PEG200. Inspection of the viscosity and self-diffusion temperature dependence reveals slight deviations from the Arrhenius equation. Interestingly, the activation energies obtained from the viscosity and the self-diffusion data are essentially identical in values suggesting that the same dynamic processes and thus the same activation barriers govern translational motion and momentum transfer in these PEG200 solutions. 
    more » « less
  7. Molecular dynamics (MD) simulations are reported for [polyethylene glycol (PEG)200], a polydisperse mixture of ethylene glycol oligomers with an average molar weight of 200 g· mol−1. As a first step, available force fields for describing ethylene glycol oligomers were tested on how accurately they reproduced experimental properties. They were found to all fall short on either reproducing density, a static property, or the self-diffusion coefficient, a dynamic property. Discrepancies with the experimental data increased with the increasing size of the tested ethylene glycol oligomer. From the available force fields, the optimized potential for liquid simulation (OPLS) force field was used to further investigate which adjustments to the force field would improve the agreement of simulated physical properties with experimental ones. Two parameters were identified and adjusted, the (HO)−C−C−O proper dihedral potential and the polarity of the hydroxy group. The parameter adjustments depended on the size of the ethylene glycol oligomer. Next, PEG200 was simulated with the OPLS force field with and without modifications to inspect their effects on the simulation results. The modifications to the OPLS force field significantly decreased hydrogen bonding overall and increased the propensity of intramolecular hydrogen bond formation at the cost of intermolecular hydrogen bond formation. Moreover, some of the tri- and more so tetraethylene glycol formed intramolecular hydrogen bonds between the hydroxy end groups while still maintaining strong intramolecular interactions with the ether oxygen atoms. These observations allowed the interpretation of the obtained RDFs as well as structural properties such as the average end-to-end distances and the average radii of gyration. The MD simulations with and without the modifications showed no evidence of preferential association of like-oligomers to form clusters nor any evidence of long-range ordering such as a side-by-side stacking of ethylene glycol oligomers. Instead, the simulation results support the picture of PEG200 being a random mixture of its ethylene glycol oligomer components. Finally, additional MD simulations of a binary mixture of tri-and hexaethylene glycol with the same average molar weight as PEG200 revealed very similar structural and physical properties as for PEG200. 
    more » « less